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A Ommitted Proofs and Derivations

Proof of Theorem 1

The proof should be read after (or concurently with) the sketch provided in the main

text.

Wages

The critical skill in country i (i.e., the skill level of the least-skilled worker employed in

country i) is defined as xci = min{xciU , xciM}. Given the critical skill level, the matching

function, wage gradient and wage function are given by Equation (4), (5) and (6), re-

spectively, and the wage paid to the worker with critical skill level xci is determined by

the outside option of that worker. In particular, if xci < 1 then wc
M(xcM) = wc

M , whereas

wU(xcU) = min{wc
U , e

∆UMPU (wc
M/PM + δUM)}, where wc

i ≡ P c
i w̄

c
i . To see why, first sup-

pose that i = M (the argument for i = U is analogous). It follows immediately from

Equation (16) and the definitions of xcMM and U c
MM that if xci < 1 then wc

M(xcM) ≥ PMw
c
M .

As fM(0, hM) < 0, it follows that in equilibrium workers with skill xM close to 0 cannot

be employed in Mexico; thus xcM > 0. It follows that wc
M(xcM) ≤ PMw

c
M—the con-

tinuity of the revenue function implies that otherwise workers with skill slightly lower

than xcM would strictly prefer to be employed in Mexico than remain unemployed, which

contradicts the definition of the critical skill.

Finally, because xcMM = xcM we have that if xcMM < 1, then wM(xcMM) = wc
M . This fur-

ther implies from Equation (16) that if xcUM < 1, then wU(xcUM) = PU

(
e∆UMwc

M/PM + δUM

)
.

Supply Functions

Given the definition of the separation function, Equation (19) follows immediately by the

exact same reasoning as in the proof of Lemma 2 in Gola (2021).

Feasibe Allocations

Define the set E of partial equilibrium allocations as the set of allocations for which there

exists a pair of wage functions wU , wM that induces both the supply and the demand

functions to be equal to SU , SM and satisfies the zero-expected-profit-condition. Define

also xsM = inf{xM ≥ xcM : ψ(xM) = 1}. Equations (18)–(21) and the requirement

that labor markets clear put strong restrictions on the partial equilibrium allocations.

In particular, the restrictions on allocations imply that for any A ∈ E, it must be the

case that (1) Sij : [0, 1] → [0, RW
i ] is non-decreasing, absolutely continuous, and semi-

differentiable on the interior, with Sij(1) = 0; (2) the function ψ : [xcMM , 1] → [xcUM , 1]

that satisfies ∂C(ψ(xM), xM)/∂xM = −∂+SMM(xM)/∂xM is well-defined, with a contin-

uous, strictly positive derivative at xM ∈ (xcM , x
s
M); (3) SMU , SMM satisfy Equation (20)
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and −∂+SMi(xi)/∂xM ∈ (0, 1); (4) SUU(xU) satisfies (21), and (4) Si(0) ≤ RF
i , where

Si(xi) = Sii(xi) +Sij(xi) and SMU(xM) = 0.1 The allocations meeting conditions (1)–(4)

will be called feasible and the set of all feasible allocations will be denoted by A. Clearly,

E ⊂ A.

Uniqueness

Proposition 1. A worker and firm allocation A∗ ∈ A can hold in the partial labor market

equilibrium if and only if it maximizes the weighted sum of (net) revenues:

A∗ ∈ E⇔ V (A∗)− V (A) > 0 for all A ∈ A \ {A∗}.

Proof. The proof will consist of two steps. First, we will prove that

A∗ ∈ E⇒ V (A∗)− V (A′) ≥ 0 for all A′ ∈ A. (A.1)

and, further, that if V (A∗) = V (A′) then A′ ̸∈ E. Second, we will prove

A∗ ∈ E⇐ V (A∗)− V (A′) ≥ 0 for all A′ ∈ A \ A∗, (A.2)

which will complete the proof.

“If”

Assume that E is non-empty and consider some A∗, A′ such that A∗ ∈ E, A′ ∈ A and

A∗ ̸= A′.2 The tuple w = (wM , wS) that clears markets for A∗ is denoted as w∗.3

We can write the total real wage bill of country j citizens who work in country i,

under wage function wi and supply function Sij as:

w̄A
ij(wi, Sij) =

∫ 0

1

wi(t)

Pi

dSij(t).

Define the weighted average of (net) real wages of all workers as:

w̄A(w,A) = e−∆UM
[
w̄A

UM(wU , SUM) + w̄A
UU(wU , SUU) + w̄c

UF (xcU(SUU))RW
U

]
+w̄A

MM(wM , SMM) + w̄c
MC(xcUM(A), xcM(A))− δUMSUM(0).

As S∗
UM , S

∗
M , S

∗
UU and w∗ are the equilibrium supply and wage functions, respectively, it

1Condition (1) follows from Equations (18)–(21) and market clearing. Condition (2) follows from
differentiating Equation (18) on (xcM , x

s
M ) and noting that wages must be non-decreasing in equilibrium;

(3) follows from Equations (19) and (20); and (4), obviously, from Equation (21). Note that RW
i denotes

the measure of workers born in country i, with RW
M normalized to 1.

2Here, and in the remainder of this proof, by ̸= we mean the negation of “equal almost everywhere”.
3Or some selection from the set of such functions, for cases when Si(0) = 0 for some i ∈ {U,M}.
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follows from the first equilibrium condition (Definition 2) that

w̄A(w∗, A∗) ≥ w̄A(w∗, A′). (A.3)

Profit maximization implies that, if RF ′
i > 0, then

πE∗
i

Pi

− cei =
1

Pi

∫ 1

0

max{ri(µi(h), h)− w∗
i (µi(h)), 0} dh− cei

≥
Ti(S

′
i, R

F ′
i )− wA

ij(w
∗
i , S

′
ij)− wA

ii (w
∗
i , S

′
ii)

RF ′
i

− cei , (A.4)

where µi is the optimal hiring function defined in Section 3.3. Suppose that RF∗
U , RF∗

M > 0,

the other cases are considered in footnote 4. Note that if RF∗
U , RF∗

M > 0, then

µi(h) = (S∗
i )−1((1− h)RF∗

i ) for h ∈ [1− S∗
i (0)/RF∗

i , 1], (A.5)

whereas for h ∈ [0, 1 − S∗
i (0)/RF∗

i ] we have ri(v, h) − w∗
i (v) ≤ 0 for all v ∈ [0, 1]. This

gives:

πE∗
i

Pi

− ci =
(
Ti(S

∗
i , R

F∗
i )− w̄A

ij(w
∗
i , S

∗
ij)− w̄A

ii (w
∗
i , S

∗
ii)
)
/RF∗

i − cei . (A.6)

Note also that e−∆UMRF ′
U (

πE∗
U

PU
−ceU)+RF ′

M (
πE∗
M

PM
−ceM) ≥ V (A′)−w̄A(w∗, A′). If RF ′

M , R
′
S >

0 this follows directly from Equation (A.4). If RF ′
i = 0, then it follows as Ti(S

′
i, R

F ′
i ) −

RF ′
i c

e
i − wA

ij(w
∗
i , S

′
ij)− wA

ii (w
∗
i , S

′
ii) ≤ 0 = RF ′

i (πE∗
i − cei ). Using the fact that

πE∗
i

Pi
− ci = 0

by the definition of equilibrium, we can write

V (A∗)− w̄A(w∗, A∗) = e−∆UMRF∗
U (

πE∗
U

PU

− ceU) +RF∗
M (

πE∗
M

PM

− ceM)

= e−∆UMRF ′

U (
πE∗
U

PU

− ceU) +RF ′

M (
πE∗
M

PM

− ceM)

≥ V (A′)− w̄A(w∗, A′). (A.7)

This proves implication (A.1) by Equation (A.3).4

4For RF∗
i = 0 we have by the definition of equilibrium that

πE∗
i

Pi
− cei ≤ 0. If RF ′

i > 0 we have that

0 = Ti(S
∗
i , R

F∗
i )− w̄A

ij(w
∗
i , S

∗
ij)− w̄A

ii(w
∗
i , S

∗
ii)−RF∗

i cei

≥ RF ′

i (
πE∗
i

Pi i

− cei ) ≥ Ti(S′
i, R

F ′

i )− wA
ij(w

∗
i , S

′

ij)− wA
ii(w

∗
i , S

′

ii)−RF ′

i cei .

Also, trivially, if RF ′

i = 0, then

0 = Ti(S
∗
i , R

F∗
i )− w̄A

ij(w
∗
i , S

∗
ij)− w̄A

ii(w
∗
i , S

∗
ii)−RF∗

i cei

= Ti(S
′
i, R

F ′

i )− wA
ij(w

∗
i , S

′

ij)− wA
ii(w

∗
i , S

′

ii)−RF ′

i cei .

Thus, it follows that V (A∗)− w̄A(w∗, A∗) ≥ V (A′)− w̄A(w∗, A′).
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Finally, suppose that A′ ∈ E and that V (A∗) = V (A′). If S∗
i ̸= S ′ for any i, then

Equation (A.3) must hold strictly, and thus V (A∗) > V (A′). Hence, S∗
i = S ′

i for all i and

RF∗
i ̸= RF ′

i for some i ∈ {U,M}. However, as the profit holding under allocation A is

πE
i (A) =

∫ 1

1−Si(0)

RF
i

∫ h

1−Si(0)

RF
i

∂

∂h
ri(S

−1
i ((1− p)RF

i ), p)dp dh+ ri(S
−1
i (RF

i ), 0)− wc
i (A.8)

and surplus increases strictly with firm type, it follows that if RF∗
i ̸= RF ′

i then πE
i (A∗) ̸=

πE
i (A′) = Pic

e
i , implying that A∗ ̸∈ E; contradiction!

“Only If”

This part of the proof will proceed in two steps. First, we will decompose the optimization

problem into inner and outer problems, derive the first-order conditions for the inner

problem, and show that any maximizer of the inner problem must satisfy conditions (1),

(2) and (4) of the competitive equilibrium. Second, we show that any maximizer of the

outer problem needs to additionally meet condition (3), thus completing the proof.

“Inner” Problem Denote the set of all functions that meet conditions (1) and (2) of

the set of feasible allocations (page 2) by SMM , and the set of all functions that meet

condition (1) only by S. Further, denote by SUM(SMM) the set of functions SUM ∈ S
that satisfy condition (3) of set A for a given SMM ∈ SMM . Note that if xcMM < 1, then

the set SUM(SMM) is a singelton, which will be denoted by SUM(SMM).

For given RF
M , R

F
U we can then define the set A(RF

U , R
F
M) of all such SMM , SUU ∈ S that

there exists some SUM ∈ SUM(SMM) such that (SUU , SUM , SMM , R
F
U , R

F
M) ∈ A. Then the

optimization problem maxA∈A V (A) is equivalent to the optimization problem:

max
(RF

M ,RF
U )∈R2

≥0︸ ︷︷ ︸
outer problem

max
(SUU ,SMM )∈A(RF

U ,RF
M )
V (SUU , SMM , R

F
U , R

F
M)︸ ︷︷ ︸

inner problem

,

where

V (SUU , SMM , R
F
U , R

F
M) ≡ max

SUM∈SUM (SMM )
V (SUU , SUM , SMM , R

F
U , R

F
M)

s.t. SU(0) ≤ RF
U .

Definition 1. The interior int(A(RF
U , R

F
M)) of set A(RF

U , R
F
M) consists of all such SMM , SUU ∈

A(RF
U , R

F
M) that xcUU , x

c
UM , x

c
MM < 1 and Si(0) < RF

i .

We will show in detail that all interior solutions of the inner problem satisfy conditions

(1), (2) and (4) of the competitive equilibrium. The proof for corner (i.e., not interior)

solutions is conceptually identical but requires small tweaks for each of the possible cases.
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Fix (RF
M , R

F
U ) ∈ R2

>0 and consider a maximizer (S∗
UU , S

∗
MM) ∈ int(A(RF

U , R
F
M)) of the

inner problem.5 Consider a one-parametric family of functions SMM(·; tM) such that (a)

for each tM ∈ [0, 1], (S∗
UU , SMM(tM)) ∈ int(A(RF

U , R
F
M)), and (b) there exists some t∗M

that corresponds to S∗
MM . It follows that

t∗M ∈ arg max
tM

V (S∗
UU , SUM(SMM(tM)), SMM(tM), RF

U , R
F
M),

and any maximizer of the original problem has to satisfy the first-order conditions of this

single-variable problem. A family SMM(·; tM) that satifies the conditions above can be

constructed for any interior (S∗
UU , S

∗
MM).6 Further, the very same exercise can be also

conducted for a family of US citizens’ supply functions, SUU(·; tU).

Define the function

V (tM ;S∗
UU , R

F
U , R

F
M) = V (S∗

UU , SUM(SMM(tM)), SMM(tM), RF
U , R

F
M),

and analogously function V (tU ;S∗
MM , R

F
U , R

F
M). In the remaining analysis of the inner

problem we will supress (S∗
UU , R

F
U , R

F
M) from notation. The optimal matching function

that holds under (SUU(tU), SUM(SMM(tM)), SMM(tM)) will be denoted by mi(xi; tM) =

µ−1
i (xi; tM) (see Equation (A.5)). Note that as tM changes, the implied separation func-

tion ψ(·; tM) changes as well. With this in mind, it can be shown easily that

∂

∂tM
mU(xU) =

∂
∂tM

SMM(ϕ(xU))

RF
U

.

Further, note that by integrating Ti(A) by substitution, and denoting ri(xi,hi)
Pi

by r̄i(xi, hi)

we get that

Ti(A) = RF
i

∫ 1

mi(xc
i )

r̄i(µi(h), h)dh.

Differentiating wrt tM yields

d

dtM
Ti(A) = −RF

i r̄i(x
c
i ,mi(x

c
i))

d

dtM
mi(x

c
i)

−RF
i

∫ 1

mi(xc
i )

∂
∂tM

mi(µi(h))

m′
i(µi(h))

∂

∂xi
r̄i(µi(h), h)dh

[by substitution] = r̄i(x
c
i ,mi(x

c
i))

∂

∂tM
Si(0) +RF

i

∫ 1

xc
i

d

dtM
mi(xi)

∂

∂xi
r̄i(xi,mi(xi))dxi.

5Note that interior solutions exist only if (RF
M , R

F
U ) ∈ R2

>0.
6Consider a family of separation functions, such that ψ(xM ; tM ) = ψ∗(xM ) + (xM − xc∗M )2(xM −

xs∗M )2 ((tM − 1)ϵ+ tM ϵ̄) for xM ∈ (xc∗M , x
s∗
M ), and ψ(xM ; tM ) = ψ∗(xM ) otherwise. As long as ϵ, ϵ̄ are

small enough, each ψ(·; tM ) is strictly increasing and thus gives raise to a supply function SMM (·; tM ).
It follows by the definition of xs∗M that if (S∗

UU , S
∗
MM ) ∈ int(A(RF

U , R
F
M )) then there must exist small

enough ϵ, ϵ̄ > 0 that (S∗
UU , SMM (tM )) ∈ int(A(RF

U , R
F
M )) for all tM ∈ [0, 1].
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Thus it can be shown that:

∂

∂tM
V =

d

dtM

[
e−∆UMTU(A) + TM(A) + w̄c

MC(xcUM , x
c
MM)− δUMSUM(0)

]
= e−∆UM

∫ 1

xc
MM

∂

∂tM
SMM(xM)ψ′(xM)

∂

∂xU
r̄U(ψ(xM),mU(ψ(xM)))dxM

−
∫ 1

xc
MM

∂

∂tM
SMM(xM)

∂

∂xM
r̄M(xM ,mM(xM))dxM

+
∂

∂tM
SUM(0)e−∆UM

(∫ xc
UM

xc
U

∂

∂xU
r̄U(xU ,mU(xU))dxU + r̄U(xcU ,mU(xcU))

)
− ∂

∂tM
SUM(0)δUM

+r̄M(xcM ,mM(xcM))
∂

∂tM
SMM(0) + w̄c

M

d

dtM
C(xcUM , x

c
MM), (A.9)

∂

∂tU
V =

d

dtU
e−∆UM

[
TU(A) + wc

UF (xcUU)RW
U

]
= e−∆UM

∂

∂tM
SUU(0)r̄U(xcU ,mU(xcU))

+e−∆UM
∂

∂tM
SUU(0)

(∫ xc
UU

xc
U

∂

∂xU
r̄U(xU ,mU(xU))dxU − w̄c

U

)
(A.10)

Because V (ti) is a single-variable function, it follows that ∂
∂ti
V (ti) ≤ 0 if t∗i ∈ [0, 1) and

∂
∂ti
V (ti) ≥ 0 if t∗i ∈ (0, 1]. Crucially, these conditions must hold for all families Sii(·; ti)

that meet conditions (a) and (b) above.

Lemma 1. For any interior maximizer (S∗
UU , S

∗
MM) of the inner problem, it is the case

that if xM ∈ (xc∗MM , x
s∗
MM), then

o(xM) ≡ e−∆UMψ∗
xM

(xM)
∂

∂xU
r̄U(ψ∗(xM),m∗

U(ψ∗(xM)))− ∂

∂xM
r̄M(xM ,m

∗
M(xM)) = 0,

(A.11)

where ψ∗
xM

(xM) = ∂
∂xM

ψ∗(xM).

Proof. Consider such family SMM(·; tM) that xcMM(tM) = xc∗MM , SMM(0; tM) = S∗
MM(0),

∂
∂xM

SMM(xc∗MM ; tM) = ∂
∂xM

S∗
MM(xc∗MM), and SMM(xM ; tM) = S∗

MM(xM) for all xM ≥
xs∗MM .This implies that xcMM , x

c
UM and SMM(0) do not change with tM , and thus nei-

ther does SUM(0), because C(xc∗UM , x
c∗
MM) = 1 − SUM(0) − SMM(0) by the definition of

SUM(SMM). It follows that Equation (A.9) reduces to

∂

∂tM
V (tM) = e−∆UM

∫ xs
MM

xc
MM

∂

∂tM
SMM(xM)ψ′(xM)

∂

∂xU
r̄U(ψ(xM),mU(ψ(xM)))dxM .

−
∫ xs

MM

xc
MM

∂

∂tM
SMM(xM)

∂

∂xM
r̄M(xM ,mM(xM))dxM (A.12)
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Suppose that there exists some xM ∈ (xc∗MM , x
s∗
MM) such that o(xM) ̸= 0. Note that

because ψ(·) is continuously differentiable, o(·) is continuous. This implies that there

exists some δ > 0 and some x̄M such that o∗(xM) ̸= 0 for all xM ∈ [x̄M − δ, x̄M +

δ]. We can always construct a feasible family SMM(·; tM) such that for all t′′M > t′M ,

sgn(SMM(xM ; t′M)−SMM(xM ; t′′M)) = sgn(o(xM)) and t∗M ∈ (0, 1).7 For such a family (a)
∂

∂tM
V (t∗M) = 0, and (b) ∂

∂tM
V (t∗M) ̸= 0 by Equation (A.12); contradiction!

We are now ready to show that for any interior (S∗
UU , S

∗
MM) there exists a pair of wage

functions (wU , wM) which together with (S∗
UU , S

∗
MM) satisfy conditions (1), (2) and (4)

of the equilibrium. As discussed on page 2 of this Appendix, the wage functions wU , wM

for which conditions (2) and (4) of equilibrium are satisfied, are given by Equation (6),

where w̄c
M(xcM) = w̄c

M and w̄U(xcU) = min{w̄c
U , e

∆UM (w̄c
M + δUM)}. For condition (1) to

be satisfied, it must be the case that these wU , wM satisfy (i) Equation (18) as well as

(ii) w̄U(xc∗UU) = w̄c
U .

First, consider ∂
∂tU

V (tU). It follows immediatelly from Equation (A.10) that

r̄U(xc∗U ,mU(xc∗U )) +

∫ xc∗
UU

xc∗
U

∂

∂xU
r̄U(xU ,mU(xU))dxU = w̄c

U . (A.13)

Let us focus on ∂
∂tM

V (tM) and consider a family SMM(·; tM) such that SMM(xc∗MM ; tM) =

S∗
MM(xc∗MM), xcUM(tM) = xc∗UM , SMM(xM ; tM) = S∗

MM(xM) for all xM ≥ xs∗MM and

t∗M ∈ (0, 1). This implies that (a) d
dtM

SUM(0; t∗M) = 0 as well as (b) d
dtM

SMM(0) =
∂

∂tM
xcMM(tM) ∂

∂xM
C(xcMM(tM), xc

∗
MU). Substituting this and Equation (A.11) into Equa-

tion (A.9) yields

r̄M(xc∗M ,mM(xc∗M)) = w̄c
M . (A.14)

Consider such family SMM(·; tM) that SUM(0; tM) ̸= S∗
UM(0) for tM ̸= t∗M , and

SMM(xM ; tM) = S∗
MM(xM) for all xM ≥ xs∗MM . Then subsituting Equations (A.11) and

7That is, SMM (xM ; t′′M ) − SMM (xM ; t′M )) = 0 only if o(xM ) = 0, and if o(xM ) ̸= 0 then
SMM (xM ; t′′M ) − SMM (xM ; t′M )) has the same sign. To construct such a family, consider any inter-
val [x′M , x

′′
M ] ⊂ [xc∗MM , x

s∗
MM ] such that o(x′M ) = o(x′′M ) = 0 and o(xM ) ̸= 0 and is of the same sign for

all xM ∈ [x′M , x
′′
M ]. Then let ψ(xM ; tM ) solve

∂

∂xM
C(ψ(xM , tM ), xM ) = sgn(o(xM ))(xM −

x′M + x′′M
2

)3(xM − x̄′M )2(xM − x̄′′M )2 ((tM − 1)ϵ+ tM ϵ̄)

− ∂+
∂xM

S∗
MM (xM )

for some positive but very small ϵ, ϵ̄. If xM belongs to an interval on which o(xM ) = 0, then set
ψ(xM ; tM ) = ψ∗(x(M)).
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(A.14) into Equation (A.9) yields

∂

∂t∗M
V (t∗M) = e−∆UM

∂

∂t∗M
SUM(0)

[∫ xc∗
UM

xc∗
U

∂

∂xU
r̄U(xU ,mU(xU))dxU + r̄U(xc∗U ,mU(xc∗U ))

]
− ∂

∂t∗M
SUM(0) (w̄c

M + δUM) = 0 (A.15)

Substituting Equation (A.13) into (A.15) yields

e∆UM (w̄c
M + δUM)− w̄c

U = w̄U(xc∗UM)− w̄U(xc∗UU), (A.16)

which implies that xc∗UM ≥ xc∗UU if and only if e∆UM (w̄c
M + δUM) ≥ w̄c

U .

Suppose that xc∗UM ≥ xc∗UU . Then w̄U(xc∗U ) = w̄c
U and condition (ii) follows immediately.

Further, Equation (A.13) reduces to r̄U(xc∗U ,mU(xc∗U )) = w̄c
U . Substituting this into Equa-

tion (A.15) ensures that w̄U(xc∗UM) = e∆UM (w̄M(xc∗MM) + δUM) . As Equation (A.11) is the

same as the first derivative of Equation (18) on (xc∗UM , x
s∗
UM), it follows that condition (ii)

must be satisfied as well.

Suppose that xc∗UM < xc∗UU . Then w̄U(xc∗UM) = e∆UM (w̄M(xc∗MM) + δUM), which reduces

Equation (A.16) to w̄U(xc∗UU) = w̄c
U . Again, Equation (A.11) is the same as the first

derivative of Equation (18) on (xc∗UM , x
s∗
UM), ensures that condition (ii) must be satisfied

as well.

“Outer” Problem The proof that the maximizers of the outer problem satisfy condi-

tion (3) of the equilibrium, follows the logic of the proof of Lemma OA.11 in Gola (2021).

Consider some maximizer (RF∗
U , RF∗

M ) of the outer problem and some RF ′
i . Define the

function RF
i (tR) = tRR

F∗
i + (1− tR)RF ′

i . Note that

T̄i(A) ≡
∫ 0

1

r̄i

(
xi,max{1− Si(xi)/R

F
i , 0}

)
dSi(xi) =

Ti(A)

Pi

if RF
i > 0

which allows us to drop condition (4) from the definition of the set of feasible allocations

as A. Denote this modified set of feasible allocations by Ā, and by V̄ the the total

weighted net revenue function, in which Ti has been replaced by T̄i. Then define

V I(SUU , SMM , tR) = max
SUM∈SUM (SMM )

V̄ (SUU , SUM , SMM , R
F
U (tR), RF

M(tR)).

It is easy to show that V I(SUU , SMM , tR) is differentiable for all tR but at most 4 (tR ∈
{0, 1} and RF

i (tR) = Si(0)), and also that whenever V I
t (SU , SM , t) does exist we have

9



that

V I
tR

(SM , SS, t) = (RF∗
U −RF ′

U )(
1

PU

πE
U (SU , RU(t))− ceU)

+(RF∗
M −RF ′

M )(
1

PM

πE
M(SS, RS(t))− ceM),

where

πE
i (Si, R

F
i ) =


∫ 1

0

∫ h

0
∂
∂h
ri(S

−1
i ((1− p)RF

i ), p)dp+ ri(S
−1
i (RF

i ), 0) dh for Ri ∈ (0, Si(0)),∫ 1

1−Si(0)

RF
i

∫ h

1−Si(0)

RF
i

∂
∂h
ri(S

−1
i ((1− p)RF

i ), p)dp dh for RF
i > Si(0).

(A.17)

Thus V (SUU , SMM , ·) is absolutely continuous for any (SUU , SMM) ∈ Ā and any choice of

RF ′
i . Clearly, 1

Pi
πE
i (Si, R

F
i (t))− cei ∈ [−ci, r̄i(1, 1)− cei ], implying

|VtR(SUU , SMM , t)| ≤ (RF∗
U −RF ′

U ) max{ceU , r̄U(1, 1)}+ (RF∗
M −RF ′

M ) max{ceM , r̄M(1, 1)}

which proves

V (tR) ≡ max
(SUU ,SMM )∈A

V I((SUU , SMM , tR)

is absolutely continuous by Theorem 2 in Milgrom and Segal (2002).

Define SUU(tR), SMM(tR) ∈ arg max(SUU ,SMM )∈A V
I((SUU , SMM , tR), T (tR) ≡ V (tR) +

ceUR
F
U (tR) + ceMR

F
M(tR) and pick any t ∈ (0, 1) for which V (·) is differentiable. Consider

two c̃eU , c̃
e
M ∈ R≥0 such that c̃ei = πE

i (RF
U (t), RF

M(t)). For entry costs c̃eM , c̃
e
S, the allocation

A(t) = (SUU(t), SUM(SMM(t)), SMM(t), RF
U (t), RF

M(t)) is a partial labor market equilib-

rium, implying that it maximizes the function Ṽ (t) = T (t)− c̃eURF
U (t)− c̃eMRF

M(t). Clearly,

both Ṽ (·) and T (·) are differentiable at t as well. It follows from first-order conditions

that ṼtR(tR) = 0 implying that

TtR(tR) = (RF∗
U −RF ′

U )c̃eU + (RF∗
M −RF ′

M )c̃eM

= (RF∗
U −RF ′

U )πE
U (RF

U (t), RF
M(t)) + (RF∗

M −RF ′

M )πE
M(RF

U (t), RF
M(t)).

This proves that

VtR(t) = (RF∗
U −RF ′

U )(πE
U (RF

U (t), RF
M(t))− ceU) + (RF∗

M −RF ′

M )(πE
M(RF

U (t), RF
M(t))− ceM).

Note, by the way, that because we can induce an equilibrium for any values of (RF
U , R

F
M)

by an appropriate choice of (c̃eU , c̃
e
M), it follows from the “if” part of this proof, that the

set arg max(SUU ,SMM )∈A V
I(SUU , SMM , tR) is a singleton.

Now, let us show that if RF∗
U > 0 then πE

M ≥ ceMPM . First, pick some RF ′
M < RF∗

M and

10



define V (t) for (RF∗
U , RF∗

M ) and (RF∗
U , RF ′

M ). From the definition of maximum follows that

there exists some t′R ∈ (0, 1) such that for any tR > t′R we have πE
M(RF

U (tR), RF
M(tR)) ≥

ceMPM . Recall that for any allocation A(t) the average profit of firms in country i is given

by Equation (A.8); it follows from continuity of (SUU(t), SMM(t)) that πE
M(RF∗

U , RF∗
M ) ≥

ceMPM .8 It remains to show that if RF∗
U ≥ 0 then πE

M ≤ ceMPM , but the proof is completely

analogous, because πE
i (t) is continuous even for RF

M = 0, in the sense that the limit of

the average profit that holds for RF
M > 0 as RF

M → 0 is an equilibrium for RF
M = 0.9 The

proof for U.S. is analogous.

Existence

Consider the set Ā(RF
U , R

F
M) of all functions SUU , SUM , SMM that meet conditions (1)–(4)

on page 2 of this Appendix given (RF
U , R

F
M). As all functions in Ā(RF

U , R
F
M) are absolutely

continuous, differentiable almost everywhere and their derivative lies in [−1, 0], it follows

that they are Lipschitz continuous with the same Lipschitz constant. Hence, by the

Arzela-Ascoli theorem Ā(RU , RM) is compact. Therefore, it follows from the Extreme

Value theorem that the set

V (RF
U , R

F
M) ≡ arg max

(SUM ,SUM ,SMM )∈Ā(RF
U ,RF

M )

V (SUU , SUM , SMM , R
F
U , R

F
M)

is non-empty. We have shown on page 10 that V (RF
U , R

F
M) is a singleton, and in footnote

8 that it is continuous in RF
U , R

F
M . Thus, employing the same logic as in the proof of

Theorem OA.2 in Gola (2021) it can be easily shown that there exists a compact set

R̄ ∈ R2
≥0 such that:

max
R̄

V (RU , RM) = max
R2≥0

V (RU , RM).

It follows from the Extreme Value theorem that arg maxA V (A) is non-empty. It follows

trivially from Proposition 1 that the equilibrium exists and is unique.

Define a map F (P) ≡ YW − p1−ε
W

∑
k YkP

ε−1
k τ 1−ε

kW . Because pW qW = YW Equation

(13) for i = W can be rewritten as

F (P) = 0.

8It follows from Berge’s (1963) maximum theorem that the correspondence S(tR) ≡
arg max(SUU ,SMM )∈A V

I((SUU , SMM , tR) is upper-hemicontinuous. However, as this correspondence is
singleton valued, this implies that it is continuous.

9This is because the equilibrium wage function that holds in the non-degenerate country (U.S.) is
trivially continuous in RF

M , and the U.S. wage function determines the lowest wage function in Mexico
that prevents any worker from remaining in that country. A similar reasoning holds even if both countries
are degenerate.
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Substituting this into Equation (23) results in

Pi =

[
(τiU)1−εYU

aF (P) +
∑

k Ykτ
1−ε
kU P ε−1

k

+
(τiM)1−εYM

aF (P) +
∑

k Ykτ
1−ε
kM P ε−1

k

+ (τiWpW )1−ε

] 1
1−ε

,

(A.18)

where a ∈ (0,mini∈{U,M,W},j∈{U,M}{( τji
pW τiW

)1−ε}). It is easy to show that any vector

P = (PU , PM , PW ) that solves the system of three Equations given by (A.18) must also

satisfy Equation (13).10 Therefore, it follows trivially that any such P solves also the

system given by (23).

Lemma 2. Consider the set P of all P ∈ R3
>0 that solve Equation (A.18) for all i ∈

{U,M,W}. The set P is non-empty.

Proof. Consider the interval Ii = [
[
(τiU )1−εYU

aYW
+ (τiM )1−εYM

aYW
+ (τiWpW )1−ε

] 1
1−ε

, τiWpW ] and

define the map T : IU × IM × IW → IU × IM × IW such that

Ti(P) ≡
[

(τiU)1−εYU

aF (P) +
∑

k Ykτ
1−ε
kU P ε−1

k

+
(τiM)1−εYM

aF (P) +
∑

k Ykτ
1−ε
kM P ε−1

k

+ (τiWpW )1−ε

] 1
1−ε

.11

(A.19)

Clearly, T is increasing. Thus, the Lemma follows from Tarski’s (1955) fixed point

theorem.

The largest vector of price indexes solving Equation (A.18) for YU , YM , YW ∈ R3
≥0 is

denoted by P̄(YU , YM , YW ), and is continuous in all arguments. Define the map Bi :

R3
≥0 → R≥0 such that Bi(Y) =

∑
k∈{U,M,W}

Ykτ
1−ε
ki

P̄k(Y)1−ε . Note that Bi is homogenous

of degree 1 (because P̄ (·) is homogeneous of degree zero) and increasing. Therefore,

maxY≤λ1 Bi(Y) = λBi(1).

Denote by A(Y) the allocation that holds in the equilibrium of the partial labor

equilibrium under price index vector P̄(Y) and expenditure vector Y. Then we can

define the map K : R3
≥0 → R3

≥0 such that

Ki ≡

Bi(Y)
1
ε

∫ 0

1
fi(x, 1− Si(x;Y)/RF

i (Y))
ε−1
ε dSi(x;Y) if i ∈ {U,M},

pW qW if i = W.

10Multiplying voth sides of (A.18) by P ε−1
i Yi, summing by i and rearranging results in

F (P)

[
1 +

aYU

aF (P) +
∑

k Ykτ
1−ε
kU P ε−1

k

+
aYM

aF (P) +
∑

k Ykτ
1−ε
kM P ε−1

k

]
= 0,

which implies that F (P) = 0.
11To see that Ti always maps into Ii, first note that it is increasing in P for all P ≥ 0, and that

T (0, 0, 0) is equal to the lower bound of Ii. Secondly, Yi

(
aF (P) +

∑
k∈{U,M,W}

Ykτ
1−ε
ik

P 1−ε
k

)−1

is always

positive, implying that Ti(P) ≤ τWipW .

12



Any fixed point of this map characterizes a general equilibrium of our model.

For i ∈ {U,M} denote
∫ 0

1
fi(x, 1 − Si(x)/RF

i )
ε−1
ε dSi(x) by Qi(Si). Then Q̄i =

maxSi∈Si
Qi(Si), where Si is the set of all feasible supply functions in country i. Set

λ = max{ max
i∈{U,M}

[Q̄ε
iBi(1)]

1
ε−1 , pW qW}.

Thus if Y ≤ λ then Ki(Y) ≤ λ.12 Thus we can define a restriction K R : [0, λ]3 → [0, λ]3

of map K . K R must have a fixed point by Brouwer’s fixed-point theorem, and – therefore

– so does K .13 This concludes the existence proof.

It can be easily shown that the equilibrium must be unique if τij = 1 for all i, j ∈
{U,M,W}. First note that then Equation (23) is solved uniquely by PU = PM = PW .

This further implies that BU(Y) = BM(Y) = BW (Y). F (P) = 0 gives that BW (Y) =

pεW qW , which pins down the unique equilibrium.

Equilibrium with Empty Mexico

We will now demonstrate that if the transportation costs either to or from Mexico are

sufficiently large, then there must exist an equilibrium in which SM(0) = 0. In what

follows we use the notation from the proof of Theorem 2. Consider an auxiliary economy

in which rAM(x, h) = 0 but the rest of the model is unchanged. Trivially, if there exists

an equilibrium of the actual model in which SM(0) = 0, then the vector of equilibrium

total expenditures YA must satisfy K A(YA) = YA, where K A is the map determining

the equilibrium of the auxiliary economy. It follows that YA is independent of τiM , τMi

for all i ∈ {U,W}; by inspection of Equation (A.18) so are P̄U(YA), P̄W (YA). Suppose

that τWM = τMW = τUM = τMU = a. Then

BM = a
1−2ε

ε

(∑
k∈{U,W} Y

A
k (P̄k(YA))ε−1

)1/ε
[
Y A
U

(∑
k∈{U,W} Y

A
k

(
P̄k(YA)/τUk

)ε−1
)−1

+ p1−ε
W

] 1
1−ε

Thus, if

a ≥

(ŪM + cfM)fM(1, 1)
1−ε
ε

[
Y A
U

(∑
k∈{U,W} Y

A
k

(
P̄k(YA)/τUk

)ε−1
)−1

+ p1−ε
W

] 1
1−ε

(∑
k∈{U,W} Y

A
k (P̄k(YA))ε−1

)1/ε


ε
2ε−1

then w̄M(1) ≤ rM(1, 1)/PM ≤ ŪM and thus SM(0) = 0 as required.

12Trivially for i = W . For i ∈ {U,M} we have Ki(Y) ≤ [Q̄iBi(1)]
1
ελ

1
ε ≤ λ.

13K is continuous by the same reasoning as that in footnote 8.

13



B Copula Functions
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Figure B.1: Two-dimensional Distributions for Clayton, Gaussian and Gumbel Copulas

Note: Figure B.1 presents the distributions of skills assuming different copula functions (row 1: Clayton,
row 2: Gaussian, row 3: Gumbel), and low (column 1) and high (column 2) correlations between skills.
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C Further Calibration Details

Identification As discussed in the main text, our model requires an identification of

nine unknown parameters. Our identification strategy relies on matching five discrete

empirical moments, a set of conditional emigration probabilities from Mexico and two

wage distributions. While in our calibration procedure all of these equations matter,

the first 19 (highlighted in (C.I1)–(C.I9)), would, on their own, identify the model’s

parameters. And indeed, in our Monte-Carlo calibration procedure, we find very close

relations between the moments from the data featured in these 19 equations and param-

eters Ξ = {KU , sU , γU , KM , sM , γM , θ, δUM ,∆UM}, for i ∈ {U,M}: Ki, si, γi, θ,∆UM > 0;

δUM ∈ R, as depicted in Figure C.1 and summarized in Table 3. Some parameters are

precisely identified by respective model equations and data moments, other emerge as a

solution to a subsystem of simultaneous equations.

e−∆UM (ŵc
U/PU − δUM) = ŵc

M/PM , (C.I1)

e−∆UM (ŵmax
U /PU − δUM) = ŵmax

M /PM , (C.I2)

rU (xcU , h
c
U ;KU , sU , γU) = ŵc

U + PU ĉ
f
U , (C.I3)

rM (xcM , h
c
M ;KM , sM , γM) = ŵc

M + PM ĉ
f
M , (C.I4)

ŵmax
M − ŵc

M =

∫ 1

xc
M

∂/∂xMrM (r,mM(r);KM , sM , γM) dr, (C.I5)

ŜUM(xcUM) =

∫ 1

xc
UM

∂/∂xUC (r, ϕ(r)) dr, (C.I6)[
−
∫ 1

xc
U

wU(r)dSU(r)

]
·
[
RF

U

∫ 1

0

πU(r)dr

]−1

= ŵshare
U /π̂share

U , (C.I7)[
−
∫ 1

xc
M

wM(r)dSM(r)

]
·
[
RF

M

∫ 1

0

πM(r)dr

]−1

= ŵshare
M /π̂share

M , (C.I8)

∑
x∈{0,0.1,...,1}

(
∂/∂xMC(ψ(G−1

M (x)), G−1
M (x))− P̂ (x)

)2
→ 0. (C.I9)

As in every selection model, migration costs, ∆UM and δUM define the shape (the

skewness) of Mexicans’ wage distributions in Mexico and in the United States. By con-

struction, in our model, these variables also determine the minimal (maximal) wages

received by Mexicans in Mexico (in the United States). Equations (C.I1) and (C.I2) are

jointly solved by ∆UM and δUM for given values of minimal and maximal wages received

by Mexicans in Mexico and the United States. These two parameters determine the

relative positioning of distributions of wages for Mexican stayers and emigrants and are

identified by the extremes of wage distributions, as the no-arbitrage migration equation

has to be fulfilled for the least and the most skilled Mexican worker. There exists a close

relation between the multiplicative (additive) migration cost and the maximal (minimal)
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calibrated wage attainable in Mexico (the United States), as summarized in Table 3 and

depicted in Figure C.1, graphs 8 and 9. However, we do not want to make our calibration

strategy vulnerable to and dependent on subjective choices of wage distributions’ cut-offs

(imposed to keep our model Lipschitz continuous). Therefore, even though we retain the

minimal and maximal wages in both countries as targeted empirical moments in the loss

function, we assign a relatively low weight to these conditions and do not fit them exactly.

●

● ●
●●

●●
●

●●●
●●

● ●
● ● ●●● ● ●●● ●● ●● ●● ● ● ●●● ● ●● ● ● ●● ●●●● ●● ●● ● ●●● ●● ● ●● ●● ● ●● ●● ● ●● ●● ● ●● ● ● ●●● ● ●● ●●● ● ● ●●● ●● ●● ● ●● ● ●●● ●● ● ●● ● ● ●● ●● ● ● ●●● ● ● ●● ●● ●●● ●● ● ● ● ● ●●● ●● ● ● ●● ●● ●●● ●● ●● ● ● ●● ● ● ●● ●●● ●● ●● ●●●● ● ●●● ●●●● ●● ●●● ● ● ●● ●● ●●● ●● ● ●● ●● ● ● ● ●●●● ● ●●●● ● ●●●● ●● ●● ●● ●● ● ●●● ● ●● ●● ●● ●● ●● ● ●●● ●●●●●● ●● ●●●● ● ●●● ● ●●● ● ● ●●● ●● ●●● ●● ●● ●●● ● ●●● ● ●● ●● ●● ●● ●●● ●● ●● ●●● ● ● ●● ●●● ●● ●●●●● ●● ●●● ●●● ● ●●● ● ●● ●●● ●●● ● ●● ●●● ●● ● ● ●● ●● ●● ● ●● ●●● ● ● ● ●●● ● ●● ●●●● ●●● ●● ●● ●● ● ●●● ●●●●● ●● ●● ● ●● ●●● ●● ●● ●● ●● ●●● ●● ●●●● ● ●● ●● ● ●● ●●● ●● ●●● ●●● ●●●●●● ●● ●● ●● ●●● ● ●● ●● ●●●● ● ● ●●●●● ●●● ● ●●● ●● ●● ●●● ●● ●● ●● ● ●●● ●● ●●● ●●●●● ● ● ● ●●● ● ● ●●● ●●●●● ●● ● ●● ●● ● ● ● ●●● ●● ● ●●● ●● ●●● ●● ●● ● ●●● ●● ●● ● ●● ●●● ●● ●●●●● ●● ●● ● ●● ●● ●● ●●● ● ●●● ●● ●● ●● ●● ●● ●● ● ●●● ● ●● ●● ●● ● ● ●● ●●● ● ●● ● ●●●●● ●● ● ●● ●●● ●●● ● ●● ●● ●● ●●● ● ●● ●●●● ●●● ● ●●● ● ●●● ● ●●● ● ● ●●● ● ●● ●● ●●● ● ●● ●● ●●● ●●● ● ●●● ●● ● ● ●● ●● ● ●●● ● ●● ●●●● ● ●● ●● ●● ●

● ●● ●● ●●● ●● ●● ● ●●●● ● ● ●●●●● ●●●● ●●● ●● ●● ● ●●● ● ●● ●● ● ● ●●●●● ●●● ● ●● ●● ●● ● ● ●● ●● ● ●●●●● ●● ● ●● ● ●●● ●
● ●●● ●●

0.80 0.82 0.84 0.86 0.88 0.90

50
00

10
00

0
20

00
0

Parameter sU

sU

Lo
ss

 F
un

ct
io

n

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●
●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.80 0.82 0.84 0.86 0.88 0.90

11
00

0
12

00
0

13
00

0
14

00
0

Parameters sU and kU

sU

k U ●

●

●
●

●

●
●

●

●
●

●

●

●●●

●●
●●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

● ●
●

●

●

●

●

● ●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●
● ●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●
●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●
● ●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●
●

●

●●

●●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●●

●

●

●

●
●

●
●●●

●

●

●

●

●

● ●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

● ●●

●

●

●

●
●

●

●

●●

●

●

●

●

● ●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

0.34 0.35 0.36 0.37

−
0.

01
0

0.
00

0
0.

00
5

0.
01

0

Parameter γU

γU

F
it 

of
 w

Ush
ar

e  (d
at

a 
vs

. m
od

el
)

●● ●● ●● ●●● ●●● ●●●●● ●●
●

●● ● ●
●

●●
●

● ●
● ●● ● ●

●● ●●
●● ●●

●
●● ● ●● ●●● ●

●●● ●●
●●● ●● ●●●

●

●●
●

●

●

●
●

●●●● ●●● ●●

●

●● ●
● ●

●
●●●

●
●

●
●

●●●
●

●
● ●
●

●● ●●
●

●
●●●● ●●●

●

● ●

●

●

●

●
●

●
●●

●
●

●●
●

●
●

●

●

●
●

●
●

●●

●

●●●

●

●

●

● ●●
●
●●●●

●

●
●

●●

● ●● ●

●

●

●

●

●
●●

●
●

●

●

● ●
●

●

●

●
●●

●
●●

●●

●●●
●

●
●

●

●

●●●●

●

● ●●●● ●● ●●

●
●

●

●
●

● ●●

●● ●
●

●

●

●

●●●

●
●

●

●●
● ●

●

●

●

● ● ●
●

●
●

●

●

●●

● ●●

●

● ●

● ●

●

●
●

●

●
●

● ●●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

● ●

● ●

●

● ●
●

● ● ●
●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●
●●

●

●●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●●

●

●●
●

●

●●

●

●

●

●

●

●

●

●
● ●●

●

●
●

●

●

●●● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●● ●●● ●● ●

●

● ●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

● ●

●

●

●

●

● ●●
●

●

● ●

●

●

●●

●

●●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●●●●●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●●

●

●

●

●●
●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●●●

●

●

●
●

●●
●

●

●

●
●

●
●

●

●

●

●
●

● ●

●
●

●

●●
●

●

●
●

●

●

●●

●

●● ●

●

●
●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●● ●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●●
● ●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●
●●

●

●●

●
●

●●

●●

●

●

●
●

●

●

●

●

●

●

●● ●
●

●

●●

●●

●

●

●

●

● ● ●

●

●

●

●

●●
●

●●

●
●

●
●

●

●

●●

●
●

●

●

●
●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

6500 7000 7500 8000 8500

−
60

0
−

20
0

0
20

0
40

0

Parameter kM

kM

F
it 

of
 c

Mf
 (d

at
a 

vs
. m

od
el

)

●●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●
●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

0.45 0.47 0.49 0.51

90
10

0
11

0
12

0
13

0

Parameter sM

sM

F
it 

of
 w

Mc
 (d

at
a 

vs
. m

od
el

)

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.30 0.32 0.34 0.36 0.38

−
0.

02
−

0.
01

0.
00

0.
01

Parameter γM

γM

F
it 

of
 w

Msh
ar

e  (d
at

a 
vs

. m
od

el
)

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

● ●
●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.5 1.0 1.5 2.0

0.
13

0.
14

0.
15

0.
16

0.
17

Parameter θ

θ

F
it 

of
 P

 (d
at

a 
vs

. m
od

el
)

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

0.30 0.32 0.34 0.36

20
0

25
0

30
0

Parameter ∆UM

∆UM

F
it 

of
 w

Mm
 (d

at
a 

vs
. m

od
el

)

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

● ●●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1500 −500 500 1500

−
40

0
−

20
0

0
20

0
40

0

Parameter δUM

δUM

F
it 

of
 w

Uc
 (d

at
a 

vs
. m

od
el

)

Figure C.1: Identification of Model Parameters

Figure C.1 shows the results of Monte Carlo calibrations for 9 fitted parameters and respective empirical
moments matched (for the mapping between parameters and moments see Table 3). Horizontal axes
represent values of respective parameters, while vertical axes depict differences between observed and
model values of matched moments (exceptions are top-left figure, in which we plot the value of loss
function, and top-middle figure, in which we plot values of KU parameters). Gray points illustrate
outcomes of 800 Monte Carlo calibrations, whereas the black square indicates the best calibration.

The set of equations (C.I3)-(C.I6) jointly determines the production function param-

16



eters in both countries: KU , sU , KM , sM , for given values of γU , γM . Since these four

parameters affect not only country-specific moments (fixed costs and the dispersion of

wage distributions) but also influence the location of the separation function, they cannot

be individually determined. Equations (C.I3)-(C.I4) indicate that for a given fixed costs

cfi and minimal wages wc
i , there exist a combination of Ki, si for i ∈ {U,M} that imposes

that the gross surplus produced by the worst match in economy i yields exactly the sum

of minimal wage and the fixed production cost (zero profit at the cutoff). Equations

(C.I5)-(C.I6) determine the spread of Mexican wage distribution and the total mass of

Mexican migrants in the United States, respectively. Note that equation (C.I5) has no

counterpart in the U.S. economy. The spread of U.S. residents’ wages gives only the range

of admissible pairs of KU , sU , not the actual values of these two parameters, because the

distribution of wage in the population of U.S. residents is exploited to compute the U.S.

skill distribution, F (·), using all degrees of freedom. In this way, one must find another

source of identification of KU and sU . In our case, this job is done by the equation that

characterizes the mass of Mexican immigrants, which depends on the separation function

ϕ(·), which in turn relates on production functions in both countries.14 Even though

Figure C.1 reveals a close relationship between these four parameters and particular mo-

ments, one has to bear in mind that KU , sU , KM , sM are a solution to a system of four

simultaneous equation rather than an explicit one-to-one identification.

Equations (C.I7)-(C.I8) determine the ratios of aggregated wage bills to total profits

earned by firms in both economies. Therefore, they directly relate to the moments that

describe the structure of GDPs discussed in Table 1. For given parameters Ki, si, these

two equations determine the magnitudes of γi in both countries, as they control the

bargaining power of firms in the process of sharing the surplus with workers.

Finally, equation (C.I9) allows us to select the value of copula parameter θ that yields

the closest fit to empirically observable conditional probabilities of emigration, P (·), along

the distribution of Mexican wages, computed using the MMP data. Our model is over-

identified, as long as we fit continuous distributions with parametric approximations.

Heckman and Honoré (1990) prove that 3 moments per country wage distribution suffice

to fully identify the log-normal self-selection model by Roy (1951).

Solution of the model For a given vector of parameter guesses (denoted by Ξ), the

solution algorithm starts with exploiting the distribution of U.S. citizens’ wages – the

only one that is not affected by the selection mechanism. Using Equation (5), we arrive

14This module is close to what has been discussed regarding identification of the self-selection model by
Roy (1951) in the paper by Heckman and Honoré (1990). Parameters Ki relate to the location of the wage

distributions, as they are identified by the fixed costs, cfi . Then, parameters si determine the dispersion
of wage distributions, while migration costs determine the skewness of the two wage distributions, as in
all self-selection models.
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at the following differential equation:

∂wU(xU)

∂xU
=

∂

∂xU
ŵU(F (xU))↔ ∂

∂xU
rU(xU , hU(xU)) = ŵ′

U(F (xU))F ′(xU), (C.1)

where the left hand side function is the derivative of the surplus with respect to its

first argument (skill ranking xU), while the right hand side function is the observed

inverse distribution of wages ŵU(·) being a function of the distribution of U.S. skills F (·),
multiplied by the density of skills supplied by U.S. residents: F ′(xU). Equation (C.1)

is the first equation in the system of two differential equations, and is solved with an

initial condition: ŵU(1) = wU(1). The solution is discretized on the assumed grid, and

computed using the Euler method.15

The second step is to reveal the underlying selection mechanism induced by a tuple:

{Ξ, F (·)}. We therefore proceed with exhausting the migration condition (18), and taking

its first derivative:

∂

∂xU
w̄M(ϕ(xU)) = e−∆UM

∂

∂xU
w̄U(xU)↔

∂

∂xU
rM(ϕ(xU), hM(ϕ(xU)))ϕ(xU)′ =

PM

PU

e−∆UM
∂

∂xU
rU(xU , hU(xU)). (C.2)

The latter serves as the second equation in the two-dimensional system, solved simulta-

neously with Equation (C.1), using the Euler method on the assumed grid, and taking

the initial condition: ϕ(1) = 1.16 For the given solution for selection pattern, determined

by the separation function ϕ(·), the mass of Mexican immigrants in the United States

can be computed by using Equation (19), discretized in the following way:

SUM(xU − dxU) = SUM(xU) + dxU∂C(xU , ϕ(xU))/∂xU , (C.3)

for all skills xU ranging from 1 down to xcUM , with step dxU = 1/K. The starting point

requires that: SUM(1) = 0.

At this stage, we can use the Euler discretization of country-specific Equations (5)

to determine the wage distributions of Mexican workers in the United States and in

Mexico. The final result of the calibration for a given guess of parameter values Ξ

is a set of three wage distributions: U.S. residents, wU ≡ (wU(xU), F (xU)), Mexican

immigrants in the United States, wUM ≡ (wU(xU), FUM(xU)), and Mexican stayers, wM ≡
15Euler method is the simplest numerical way to solve an ordinary differential equation (ODE) with

a given initial condition. For a given ODE: y′(x) = f(x), y(1) = f(1), and a given series of grid points:
{x(1), ..., x(K)}, one computes the values of y by setting: y(x(t)) = y(x(t−1))+(x(t)−x(t−1))f(x(t−1)).

16Our model approximates the model with unbounded, log-normally distributed skills, in which ϕ(1) =
1 (this means that ∀xU ≤ 1 ∃xM : (xU , xM ) stays in Mexico). Thus, setting ϕ(1) = 1 amounts to imposing
a condition that, in this dimension at least, we consider only specifications that retain this important
feature of the model with (untruncated) log-normal skills.
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(wM(xM), FM(xM)).17

Calibration algorithm Our goal in the calibration procedure is to find such a vector

of parameters Ξ that gives the best possible fit of wU , wUM and wM to the observed

distributions ŵU , ŵUM and ŵM , along with fitting crucial moments in the data. The

solution of the model requires finding functions and distributions, for which there exists

no analytical solution, therefore to calibrate the model we cannot escape solving it for

each guess of parameters Ξ.

The calibration procedure assumes a search through a dim Ξ = 9 dimensional space of

parameters, and each vector requires a full solution of the model on the defined grid. To

maximize the performance of such a computationally-intensive search, we propose a ver-

sion of a basing-hopping algorithm, enriched with a Monte Carlo search procedure, with

a given goal function.18 Our implementation of the random search through the parameter

space is in principle a variant of the Simulated Annealing Optimization method.

Each vector Ξ is evaluated using a subjective goal function:19

ζ(Ξ) = p1|cfU − ĉ
f
U |+ p2|cfM − ĉ

f
M |+ p3|wmin

M − ŵmin
M |+ p4|wmax

M − ŵmax
M |

+ p5|wmin
UM − ŵmin

UM |+ p6|wshare
U − ŵshare

U |+ p7|wshare
M − ŵshare

M |

+ p8e(P − P̂ ) + p9|SUM(0)− ŜUM(0)|

+ p10e(wU) + p11e(wUM) + p12e(wM),

(C.4)

where e(·) is an error function that computes the squared difference between an ob-

ject from the model and its empirical counterparty in the data, and p’s are subjective

weights.20 The P (·) function computes the conditional probabilities of emigration from

Mexico (see Equation C.I9), while functions wi(·) represent the group-specific distri-

butions of wages. The goal function aims at minimizing: (i) the distance between eight

model variables and corresponding moments in the data (multiplied by weights: p1, ..., p8);

(ii) the absolute difference between the number of Mexican migrants in the United States

from the model and from the data (weighted by p9) and the distances between model and

17The proposed notation includes skill CDFs in the analyzed groups of workers. FUM (xU ) =
(SUM (xcUM )− SUM (xU )) /SUM (xcUM ), while: FM (xM ) = (SM (xcM )− SM (xM )) /SM (xcM ).

18Standard, one-dimensional selection models can be calibrated using a Maximum Likelihood Estima-
tion (MLE). In the case of our model this is not feasible because the selection patterns cannot be solved
for analytically. This means that we are unable to obtain closed form solutions for the distributions of
wages, which makes it impossible to use a standard MLE algorithm. Instead, we set the model param-
eters to match the full distributions of the three groups of workers that we observe. This method is
computationally less demanding, but arrives at a similar outcome: a MLE of Ξ would aim at equalizing
the model distribution of wages to the observed ones, so that the probability of selecting an individual
from a given wage distribution (that is an ordered pair of wage rate and ranking) is maximized.

19p1 = p2 = 100, p3 = p4 = p5 = 1, p6 = p7 = 5 · 105, p8 = 104, p9 = 4 · 105, p10 = 50, p11 = 3, p12 = 2.
20For P (·) the function e(·) returns the Euclidean distance between model vector of probabilities and

data. For distributions, for every grid point we compute Euclidean distances between quantiles of data
and model distributions.

19



data wage distributions in three populations (weighted by p10, ..., p12).

The proposed Monte Carlo search method assumes the following procedure:

1. Select a randomly drawn guess of parameters Ξ0.

2. If ζ(Ξ0) < threshold continue; else go to step 1.

3. Search for a new vector of parameters in a close neighborhood of the current vector

of parameters: Ξ1 : e(Ξ0,Ξ1) < ϵ(ζ(Ξ0)), where the imposed distance is a function

of the current “goodness of fit” of the model.

4. If ζ(Ξ1) < ζ(Ξ0) then Ξ0 ← Ξ1 and go to step 3.

5. If no better vector Ξ1 found after a given number of replications, return the best

fitting vector Ξ0 and go to step 1.

The algorithm settled on the vector of parameters indicated in Table C.1. For a

graphical analysis of the loss function minimum achieved by the best parameter vector

consult Figure C.2, where we disturb the best vector of parameters (deviation of which is

normalized to zero in the figures) with small positive and negative deviations. Location

(Ki) and spread (si) of the skill-component in the U.S.-based surplus function take higher

values than their counterparts in Mexico. The former is driven by a significant first-

order stochastic dominance of the wage distribution of Mexican emmigrants relative to

Mexican stayers, while the latter indicates a higher dispersion in skills pricing on the

American market comparing to Mexico. Then, firms’ component in surplus appears

to be almost identical in the United States and in Mexico. Interestingly enough, our

best calibration returns a rather low value of the copula parameter θ. Its value close

to 1 indicates that U.S. and Mexican skills are weakly related with an average rank

correlation of 0.33. Migration costs take values in expected ranges: the multiplicative

one equals 1−∆UM = 68% of migrant’s wage in the United States, while the additive one

is δUM = 338 USD. Trade costs, reported in Table C.2, take values ranging between 1 and

2.1, they are solely determined by the bilateral trade matrix for a given combination of

price indexes, aggregated productions and the elasticity of substitution between product

varieties.21

Backward Recalibration Our calibration strategy considers a single, cross-sectional

snapshot of U.S. and Mexican economies, by fitting nine model parameters to eight

discrete moments and a set of conditional probabilities of emigration. This might raise

concerns that (i) the calibrated parameters are unstable over time and (ii) that there is no

21Note that the fact the trade costs are smaller between the US and ROW than the US and Mexico
does not constitute a failure of simple gravity, as the ROW includes many much larger economies than
Mexico, one of which (Canada) is also a neighboring country.
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Figure C.2: Evaluation of the Best Parameter Vector

Figure C.2 presents the values of loss function ζ(Ξ), Eq. (C.4) in the neighborhood of the best parameter
vector. Four panels represent one-dimensional marginal values with respect to 9 calibrated parameters:
KU ,KM , sU , sM , γU , γM ,∆MU , δMU , θ. Horizontal axes represent deviations in the value of respective
parameters (calibrated value normalized to 0), while vertical axes depict values of loss function (mini-
mized value normalized to 1).

Table C.1: Calibrated values of parameters

US Market MEX Market Migration Parameters

KU = 12, 457.9 KM = 7, 529.1 θ = 0.990

sU = 0.849 sM = 0.462 δUM = 338.2

γU = 0.354 γM = 0.356 ∆UM = 0.319
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Table C.2: Calibrated trade costs

To:\From: ROW MEX US

ROW 1.00 1.82 1.14

MEX 1.96 1.00 1.39

US 1.99 2.09 1.00

natural external validation of our calibration. To dispel these worries, we investigate the

fit of our 2015 model to 2010 data on labor markets, wages and migration. First, we argue

that parameters that represent production technology and prices for skills (sU , sM , γU , γM)

are held constant throughout the course of five years. This assumption is motivated by

the fact that the standard deviations of wage distributions are almost identical across

the two waves, so as the share of firms’ profits in GDP. Second, we recalibrate the model

using only five model parameters (kU , kM , δUM ,∆UM , θ), and show that we are able to

fit the 2010 data with a reduced set of parameters. The outcomes of the calibration are

depicted in Figure C.3.
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Figure C.3: Model Fit to 2010 data

We observe only slight changes in the values of recalibrated parameters. The mul-

tiplicative constant in production function represents total factor productivities in both

countries, changes by -11% in the United States and remains roughly identical in Mexico.

The utility costs of migration are lower in 2010 by 4 percentage point (of the wage lost

when migrating), while monetary costs of migration are larger by approximately 100 USD

in 2010. Recall that the Deferred Action for Childhood Arrivals (DACA) legislation was

already active in 2015, but not present in 2010, which might explain these differences.

Finally, the copula parameter equals 1.2 in 2010, which implies a small increase in the

skill correlation among Mexicans by 4 percentage points.
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Simulation algorithm In counterfactual simulations we manipulate the values of

additive (and multiplicative) migration costs. We solve for the new equilibrium, keeping

the set of parameters: {ki, γi, si} for i ∈ {U,M} and θ constant. δUM (and ∆UM) change,

while the remaining variables and functions in the model become endogenous.

The algorithm solves for the new equilibrium following a sequential computation pro-

cedure. Taking a first guess on the total number of Mexican migrants to the US, SUM(0),

it recomputes the skill and wage distributions, for the new migration costs. Then, sepa-

rately for each economy, the procedure computes the mass of firms by setting expected

profits equl to the fixed costs of entry. These steps allow to obtain country-specific labor

market equilibria. Finally, the trade matrix is updated, price indexes are recomputed

and new guess on the counterfactual number of Mexicans in the United States can be

produced. This iterative procedure is continued as long as the aggregated deviation in all

endogenous variables in consecutive steps is smaller than 1/K. In Figure C.4, we present

deviations in values of GDPs after recomputing the labor market equilibrium for (non-)

equilibrium initial values of GDPs. Only one point (the actual equilibrium) is mapped

on itself; other starting points map to different points with positive distance from the

initial ones. This indicates that the two-market general equilibrium necessarily has a

unique solution (in a fairly large neighborhood of the initial equilibrium) which can be

computed using an iterative procedure (first solve labor market, than solve international

goods market, repeat until convergence).

D Additional Results

We verify the robustness of our main results by performing several additional simulations,

including alternative parameter values (for the market size effect and the structure of

costs), and functional forms of the distribution of inactive individuals.

Fiscal Effects Mexican migrants in the United States tend to locate in the left tail

of wage distributions, consequently they are expected to have a net fiscal contribution

different from the one of U.S. or Mexican residents. To quantify the extent to which

the U.S. and Mexican fiscal balances change due to Mexican immigration, we add to

our model the fiscal extension.22 Double-dashed black lines in Figure D.1a illustrate

that due to Mexican immigration, U.S. residents are forced to pay 94 USD of the budget-

balancing lump-sum tax, while Mexican stayers benefit from a 46 USD lump-sum transfer

22Specifically, we calculate how much the budget deficit in country i would change in response to
Mexican immigration, and then redistribute this difference across all workers in country i. This is an
out-of-equilibrium exercise, since in our model Mexican workers only take gross wages into account when
making their migration decision, but it nevertheless provides an indication about the order of magnitudes.
Regarding the data, we collect income and corporate tax rates and thresholds for the United States and
Mexico from the OECD. Finally, we assume balanced governmental budgets, and choose that the lump-
sum transfers adjust after shocking the economy.
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Figure C.4: Uniqueness of Model’s General Equilibrium
Figure C.4 illustrates the numerical proof of uniqueness of the model’s general equilibrium. The “xx”
(“yy”) axis represents initial deviations in Mexican (U.S.) GDP, while the vertical axis depict logarithms
of Euclidean distances between initial and computed vectors of GDPs. General equilibrium GDP levels
are normalized to 1.

(note that the solid light gray lines recall the benchmark results from Figure 3). Despite

being quantitatively small, the change in net benefits received by incumbent residents

sets the share of winners and losers to approximately 40:60 in the United States and

60:40 in Mexico.

Illegal Mexican Immigration Illegal migration from Mexico to the United States

proves to be one of the key points in the overall discussion about American migration

policy. To analyze its economic importance, we include estimates of the number of

undocumented Mexicans and their wage distribution in our quantifications.23 The quan-

titative outcomes of including illegal Mexican immigrants in the no-migration scenario

are depicted in Figure D.1a with long-dashed gray lines. The magnitudes of the eco-

nomic impacts become significantly more pronounced (especially for the low-skilled U.S.

residents), while the measures of losers and winners stay virtually unchanged.

23We take the number of undocumented Mexicans from the Pew Research Center. The authors calcu-
late that out of 11.7 million Mexican immigrants in the United States in 2014, there were approximately
5.8 million illegals. Our data consider 7 million working-age migrants (according to the crude estimates,
one-third/one-fourth of illegals are included in the U.S. Census); thus, in this simulation we increase the
number of Mexicans in the US to 10.5 million. Illegal migrants earn substantially lower wages than their
legal peers. Caponi and Plesca (2014) compute the wage penalty for illegals along the wage distribution
(see their Figure 1), which equals approximately 15-20%, in line with the findings of Massey and Gentsch
(2014).
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Alternative distributions of inactive individuals’ skills Any shock to the supply

of skills in the United States affects workers’ participation. More precisely, the presence

of Mexicans discourages some previously employed Americans to quit the labor market.

Importantly, we do not observe the wages (nor the skills) of these inactive individuals;

thus, we can only speculate about the distribution of their skills. In the benchmark, we

assume that the skills of out-of-the-market individuals are distributed uniformly. In what

follows, we verify this by taking exponential (strictly convex) and logarithmic (strictly

concave) CDFs. Both have a negligible impact on the wage effect, as depicted in Figure

D.1b.

Modifying the market size effect The literature provides numerous estimates of

the elasticity of trade flows with respect to trade costs (equivalent to the elasticity of

substitution between varieties, ε, in our model). The various model specifications and

datasets used, however, allow us to formulate a convergent view on the magnitude of

this particular variable. In the Melitz (2003) trade model with heterogeneous firms,

Simonovska and Waugh (2014b) indicate that the 80% confidence interval is [4.1, 6.2].

Melitz and Redding (2015) use ε = 4 in their simulations. In the framework developed

by Eaton and Kortum (2002), this elasticity is found to be in the range of [3.8, 5.2]

according to Bernard et al. (2003); Donaldson (2018); Burstein and Vogel (2010); Eaton

et al. (2011); Parro (2013); Simonovska and Waugh (2014a); Caliendo and Parro (2015),

although Eaton and Kortum (2002) estimate it at the level of 8. Therefore, we verify the

consequences of alternative estimates of ε for our main results. Figure D.1c summarizes

the main results assuming different magnitudes of the market size effect. The solid gray

line indicates the reference value of ε = 7; with the dark-gray line, we assume ε = 9;

and the black line imposes ε = 5. Higher elasticities (lower market size effects) move the

welfare effects very slightly downward. A stronger market size effect has a significantly

positive impact on the gains from inviting immigrants, which increases the mass of winners

to 100%.

Changing the structure of capital costs One degree of freedom in the calibration

process is subject to a broad interpretation of the underlying data. This problem con-

cerns the division between variable and fixed costs of capital, that are necessary to pin

down production costs. In the benchmark calibration, we assume that the consumption

of fixed capital that relates to structures constitutes the fixed part of capital costs, while

equipment and intellectual property costs are ascribed to its variable part. In this ro-

bustness check, depicted in Figure D.1d, we verify the results of our migration scenario

in two extreme cases of 100% of capital consumption being related to the fixed (variable)

costs of production, illustrated by the dark-gray (black) line. Higher fixed share of capital

costs twists the gain distribution clockwise, while higher variable share of costs inflates
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(b) Alternative Inactive Workers’ Skill Levels
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(c) Magnitude of the Market Size Effect
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(d) Changes in Capital Costs Structure

Figure D.1: Robustness Checks

Note: Figure D.1 illustrates the economic effects of Mexican migration to the United States, with alternative assumptions
about the structure of the model. Figure D.1a includes illegal immigrants (gray dashed line) and fiscal effects (black double-
dashed line). Figure D.1b experiments with the distribution of skills of inactive workers. The reference scenario (solid
gray) assumes a linear CDF, the “convex scenario” (long-dashed dark gray) assumes exponential CDF, while the “concave
scenario” (double-dashed black) assumes logarithmic CDF. Figure D.1b assumes alternative values for the elasticity of
substitution between varieties (solid gray benchmark: ε = 7, double-dashed black: ε = 5, long-dashed dark gray: ε = 9).
Figure D.1c assumes alternative structure of capital and investment costs (solid gray benchmark: fixed costs constitute
35% of capital costs, double-dashed black: 0%, long-dashed gray: 100%).
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the magnitudes of extreme effects, but keeps the indifferent individual at around 40th

percentile, close to our benchmark result.

Applying redistribution among U.S. citizens Below, we complement the find-

ings of Section 5.2 by deriving the tax rates imposed on all U.S. citizens that finance

a lump-sum transfers designed to keep the variance of U.S. citizens wage distribution

constant between the reference and the counterfactual scenarios. Note that this redistri-

bution policy does not affect average wages among U.S. citizens. Figure D.2 depicts the

outcomes with the long-dashed gray (solid black) line indicating the case of labor market

effects (labor market and market size effects). The induced tax rates are almost linear

in migration cost liberalizations. In order to maintain the variance of U.S. citizens wage

distributions constant, every 100 USD reduction of visa costs should be followed by an

increase in proportional income taxes by 0.027 percentage points. The respective number

for the full general equilibrium model is 0.02.

−1400 −1000 −600 −200 0

Variance−Indifferent Tax Rates for U.S. Wage Distribution

0.
0

0.
1

0.
2

0.
3

0.
4

P
er

ce
nt

Change in Migration Cost in USD

Figure D.2: Redistribution Among U.S. Citizens: Variance-Preserving Tax Rates

Note: Figure D.2 plots the tax rates that compensate for the change in wage inequality generated by
more liberal Mexico-US immigration policies. The long-dashed gray line (the solid black line) represents
labor market effects (labor and market size effects). Horizontal axes present deviations in monetary costs
of migration, δUM , relative to the status quo
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